登录  
 加关注
查看详情
   显示下一条  |  关闭
温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!立即重新绑定新浪微博》  |  关闭

扬帆-孟祥东老师的博客

河北涿州中学 孟祥东

 
 
 

日志

 
 

半导体  

2009-11-17 21:46:56|  分类: 物理教学 |  标签: |举报 |字号 订阅

  下载LOFTER 我的照片书  |

半导体简介  顾名思义:常温下导电性能介于导体(conductor)与绝缘体(insulator)之间的材料,叫做半导体(semiconductor).

  物质存在的形式多种多样,固体液体气体等离子体等等。我们通常把导电性和导电导热性差或不好的材料,如金刚石人工晶体琥珀陶瓷等等,称为绝缘体。而把导电、导热都比较好的金属如金、银、铜、铁、锡、铝等称为导体。可以简单的把介于导体和绝缘体之间的材料称为半导体。与导体和绝缘体相比,半导体材料的发现是最晚的,直到20世纪30年代,当材料的提纯技术改进以后,半导体的存在才真正被学术界认可。

  半导体的分类,按照其制造技术可以分为:集成电路器件,分立器件、光电半导体、逻辑IC、模拟IC、储存器等大类,一般来说这些还会被分成小类。此外还有以应用领域、设计方法等进行分类,最近虽然不常用,单还是按照IC、LSI、VLSI(超大LSI)及其规模进行分类的方法。此外,还有按照其所处理的信号,可以分成模拟、数字、模拟数字混成及功能进行分类的方法。

[编辑本段]

金属和绝缘体[1]之间并有负的电阻温度系数的物质。

  半导体室温时电阻率约在10E-5~10E7欧·米之间,温度升高时电阻率指数则减小。

  半导体材料很多,按化学成分可分为元素半导体和化合物半导体两大类。

  锗和硅是最常用的元素半导体;化合物半导体包括Ⅲ-Ⅴ 族化合物(砷化镓、磷化镓等)、Ⅱ-Ⅵ族化合物( 硫化镉、硫化锌等)、氧化物(的氧化物),以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物组成的固溶体(镓铝砷、镓砷磷等)。除上述晶态半导体外,还有非晶态的玻璃半导体、有机半导体等。

  半导体(东北方言):意指半导体收音机,因收音机中的晶体管由半导体材料制成而得名。

  本征半导体

  不含杂质且无晶格缺陷的半导体称为本征半导体。在极低温度下,半导体的价带是满带(见能带理论),受到热激发后,价带中的部分电子会越过禁带进入能量较高的空带,空带中存在电子后成为导带,价带中缺少一个电子后形成一个带正电的空位,称为空穴。导带中的电子和价带中的空穴合称电子 - 空穴对,均能自由移动,即载流子,它们在外电场作用下产生定向运动而形成宏观电流,分别称为电子导电和空穴导电。这种由于电子-空穴对的产生而形成的混合型导电称为本征导电。导带中的电子会落入空穴,电子-空穴对消失,称为复合。复合时释放出的能量变成电磁辐射(发光)或晶格的热振动能量(发热)。在一定温度下,电子 - 空穴对的产生和复合同时存在并达到动态平衡,此时半导体具有一定的载流子密度,从而具有一定的电阻率。温度升高时,将产生更多的电子 - 空穴对,载流子密度增加,电阻率减小。无晶格缺陷的纯净半导体的电阻率较大,实际应用不多。

[编辑本段]

晶格:晶体中的原子在空间形成排列整齐的点阵,称为晶格。

  共价键结构:相邻的两个原子的一对最外层电子(即价电子)不但各自围绕自身所属的原子核运动,而且出现在相邻原子所属的轨道上,成为共用电子,构成共价键。

  自由电子的形成:在常温下,少数的价电子由于热运动获得足够的能量,挣脱共价键的束缚变成为自由电子。

  空穴:价电子挣脱共价键的束缚变成为自由电子而留下一个空位置称空穴。

  电子电流:在外加电场的作用下,自由电子产生定向移动,形成电子电流。

  空穴电流:价电子按一定的方向依次填补空穴(即空穴也产生定向移动),形成空穴电流。

  本征半导体的电流:电子电流+空穴电流。自由电子和空穴所带电荷极性不同,它们运动方向相反。

  载流子:运载电荷的粒子称为载流子。

  导体电的特点:导体导电只有一种载流子,即自由电子导电。

  本征半导体电的特点:本征半导体有两种载流子,即自由电子和空穴均参与导电。

  本征激发:半导体在热激发下产生自由电子和空穴的现象称为本征激发。

  复合:自由电子在运动的过程中如果与空穴相遇就会填补空穴,使两者同时消失,这种现象称为复合。

  动态平衡:在一定的温度下,本征激发所产生的自由电子与空穴对,与复合的自由电子与空穴对数目相等,达到动态平衡。

  载流子的浓度与温度的关系:温度一定,本征半导体中载流子的浓度是一定的,并且自由电子与空穴的浓度相等。当温度升高时,热运动加剧,挣脱共价键束缚的自由电子增多,空穴也随之增多(即载流子的浓度升高),导电性能增强;当温度降低,则载流子的浓度降低,导电性能变差。

  结论:本征半导体的导电性能与温度有关。半导体材料性能对温度的敏感性,可制作热敏和光敏器件,又造成半导体器件温度稳定性差的原因。

  杂质半导体:通过扩散工艺,在本征半导体中掺入少量合适的杂质元素,可得到杂质半导体。

  N型半导体:在纯净的硅晶体中掺入五价元素(如磷),使之取代晶格中硅原子的位置,就形成了N型半导体。

  多数载流子:N型半导体中,自由电子的浓度大于空穴的浓度,称为多数载流子,简称多子。

  少数载流子:N型半导体中,空穴为少数载流子,简称少子。

  施子原子:杂质原子可以提供电子,称施子原子。

  N型半导体的导电特性:它是靠自由电子导电,掺入的杂质越多,多子(自由电子)的浓度就越高,导电性能也就越强。

  P型半导体:在纯净的硅晶体中掺入三价元素(如硼),使之取代晶格中硅原子的位置,形成P型半导体。

  多子:P型半导体中,多子为空穴。

  少子:P型半导体中,少子为电子。

  受主原子:杂质原子中的空位吸收电子,称受主原子。

  P型半导体的导电特性:掺入的杂质越多,多子(空穴)的浓度就越高,导电性能也就越强。

  结论:

  多子的浓度决定于杂质浓度。

  少子的浓度决定于温度。

  PN结的形成:将P型半导体与N型半导体制作在同一块硅片上,在它们的交界面就形成PN结。

  PN结的特点:具有单向导电性。

  扩散运动:物质总是从浓度高的地方向浓度低的地方运动,这种由于浓度差而产生的运动称为扩散运动。

  空间电荷区:扩散到P区的自由电子与空穴复合,而扩散到N区的空穴与自由电子复合,所以在交界面附近多子的浓度下降,P区出现负离子区,N区出现正离子区,它们是不能移动,称为空间电荷区。

  电场形成:空间电荷区形成内电场。

  空间电荷加宽,内电场增强,其方向由N区指向P区,阻止扩散运动的进行。

  漂移运动:在电场力作用下,载流子的运动称漂移运动。

  PN结的形成过程:如图所示,将P型半导体与N型半导体制作在同一块硅片上,在无外电场和其它激发作用下,参与扩散运动的多子数目等于参与漂移运动的少子数目,从而达到动态平衡,形成PN结。

  

半导体 - 孟祥东 - 扬帆

PN

  电位差:空间电荷区具有一定的宽度,形成电位差Uho,电流为零。

  耗尽层:绝大部分空间电荷区内自由电子和空穴的数目都非常少,在分析PN结时常忽略载流子的作用,而只考虑离子区的电荷,称耗尽层。

  PN结的单向导电性

[编辑本段]

编辑本段]

伏安特性曲线:加在PN结两端的电压和流过二极管的电流之间的关系曲线称为伏安特性曲线。如图所示:

半导体 - 孟祥东 - 扬帆

PN

  正向特性:u>0的部分称为正向特性。

  反向特性:u<0的部分称为反向特性。

  反向击穿:当反向电压超过一定数值U(BR)后,反向电流急剧增加,称之反向击穿。

  势垒电容:耗尽层宽窄变化所等效的电容称为势垒电容Cb。

  变容二极管:当PN结加反向电压时,Cb明显随u的变化而变化,而制成各种变容二极管。如下图所示。

半导体 - 孟祥东 - 扬帆

PN

  平衡少子:PN结处于平衡状态时的少子称为平衡少子。

  非平衡少子:PN结处于正向偏置时,从P区扩散到N区的空穴和从N区扩散到P区的自由电子均称为非平衡少子。

  扩散电容:扩散区内电荷的积累和释放过程与电容器充、放电过程相同,这种电容效应称为Cd。

  结电容:势垒电容与扩散电容之和为PN结的结电容Cj。

[编辑本段]

原子会在靠近传导带的地方产生一个新的能阶,而受体原子则是在靠近价带的地方产生新的能阶。假设掺杂原子进入硅,则因为硼的能阶到硅的价带之间仅有0.045电子伏特,远小于硅本身的能隙1.12电子伏特,所以在室温下就可以使掺杂到硅里的硼原子完全解离化(ionize)。

  掺杂物对于能带结构的另一个重大影响是改变了费米能阶的位置。在热平衡的状态下费米能阶依然会保持定值,这个特性会引出很多其他有用的电特性。举例来说,一个p-n接面(p-n junction)的能带会弯折,起因是原本p型半导体和n型半导体的费米能阶位置各不相同,但是形成p-n接面后其费米能阶必须保持在同样的高度,造成无论是p型或是n型半导体的传导带或价带都会被弯曲以配合接面处的能带差异。

  上述的效应可以用能带图(band diagram)来解释,。在能带图里横轴代表位置,纵轴则是能量。图中也有费米能阶,半导体的本质费米能阶(intrinsic Fermi level)通常以Ei来表示。在解释半导体元件的行为时,能带图是非常有用的工具

  半导体材料的制造

  为了满足量产上的需求,半导体的电性必须是可预测并且稳定的,因此包括掺杂物的纯度以及半导体晶格结构的品质都必须严格要求。常见的品质问题包括晶格的错位(dislocation)、双晶面(twins),或是堆栈错误(stacking fault)都会影响半导体材料的特性。对于一个半导体元件而言,材料晶格的缺陷通常是影响元件性能的主因。

  目前用来成长高纯度单晶半导体材料最常见的方法称为裘可拉斯基制程(Czochralski process)。这种制程将一个单晶的晶种(seed)放入溶解的同材质液体中,再以旋转的方式缓缓向上拉起。在晶种被拉起时,溶质将会沿着固体和液体的接口固化,而旋转则可让溶质的温度均匀。

[编辑本段]

编辑本段]

电晶体Transistor)/ 二极体(Diode)」。

  一、在 无电收音机(Radio)及 电视机(Television)中,作为“讯号放大器 /整流器”用。

  二、近来发展「太阳能(Solar Power)」,也用在「光电池(Solar Cell)」中。

  三、半导体可以用来测量温度,测温范围可以达到生产、生活、医疗卫生、科研教学等应用的70%的领域,有较高的准确度和稳定性,分辨率可达0.1℃,甚至达到0.01℃也不是不可能,线性度0.2%,测温范围-100~+300℃,是性价比极高的一种测温元件。

[编辑本段]

编辑本段]

半导体的英文及解释

  Semiconductor

  A semiconductor is a material with an electrical conductivity that is intermediate between that of an insulator and a conductor. A semiconductor behaves as an insulator at very low temperature, and has an appreciable electrical conductivity at room temperature although much lower conductivity than a conductor. Commonly used semiconducting materials are silicon, germanium, and gallium arsenide.

  评论这张
 
阅读(182)| 评论(0)

历史上的今天

评论

<#--最新日志,群博日志--> <#--推荐日志--> <#--引用记录--> <#--博主推荐--> <#--随机阅读--> <#--首页推荐--> <#--历史上的今天--> <#--被推荐日志--> <#--上一篇,下一篇--> <#-- 热度 --> <#-- 网易新闻广告 --> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构--> <#--博主发起的投票-->
 
 
 
 
 
 
 
 
 
 
 
 
 
 

页脚

网易公司版权所有 ©1997-2018